Electric Motors for Electric Vehicles 2024-2034: IDTechEx

Electric Motors for Electric Vehicles 2024-2034: IDTechEx

1. EXECUTIVE SUMMARY 1.1. What’s New in This Report? (1) 1.2. What’s New in This Report? (2) 1.3. Summary of Traction Motor Types 1.4. Electric Motor Type Market Share by Vehicle 1.5. Average Motor Power 2022 by Vehicle Category (kW) 1.6. Convergence on PM Motors by Major Automakers 1.7. Motor Type Market Share Forecast 1.8. Commentary on Electric Traction Motor Trends in Cars 1.9. OEM & Tier 1 Approaches to Eliminate Rare Earths 1.10. Hairpin Winding Regional Market Shares 1.11. Materials in Electric Motors Forecast 2021-2034 (kg) 1.12. Motor Technologies in Two-wheelers 1.13. Average Motor Power of Microcars 1.14. Motors Used in eLCVs 1.15. Medium Duty Truck Models Motor Power 1.16. Heavy Duty Truck Models Motor Power 1.17. Truck Motor Type Market Share and Power Output Requirements 1.18. Electric Bus Motor Types 1.19. Automotive Axial Flux Motor Forecast 2021-2034 (units) 1.20. Examples of Vehicles with In-wheel Motors 1.21. In-wheel Motors Forecast 2021-2034 (units) 1.22. Motor Type Power Density Benchmark 1.23. Motor Cooling Strategy Forecast (Units) 1.24. BEV Power Density Benchmarking 1.25. Commercial Vehicle Motors Power Density Benchmarking 1.26. Light Duty Vehicle Motors Power Density Benchmarking 1.27. Total Motors Forecast by Vehicle and Drivetrain 2021-2034 (units) 1.28. Total Motor Power Forecast by Vehicle and Drivetrain 2021-2034 (kW) 1.29. Total Motor Market Size Forecast by Vehicle and Drivetrain 2021-2034 ($ billions) 1.30. Forecast Commentary 2. INTRODUCTION 2.1. Electric Vehicles: Basic Principle 2.2. Electric Vehicle Definitions 2.3. Drivetrain Specifications 2.4. Parallel and Series Hybrids: Explained 2.5. Electric Motors 3. TYPES OF ELECTRIC TRACTION MOTOR AND BENCHMARKING 3.1.1. Electric Traction Motor Types (1) 3.1.2. Summary of Traction Motor Types 3.1.3. Benchmarking Electric Traction Motors 3.1.4. Peak vs Continuous Properties 3.1.5. Efficiency 3.1.6. Brushless DC Motors (BLDC): Working Principle 3.1.7. BLDC Motors: Advantages, Disadvantages 3.1.8. BLDC Motors: Benchmarking Scores 3.1.9. Permanent Magnet Synchronous Motors (PMSM): Working Principle 3.1.10. PMSM: Advantages, Disadvantages 3.1.11. PMSM: Benchmarking Scores 3.1.12. Differences Between PMSM and BLDC 3.1.13. Wound Rotor Synchronous Motor (WRSM): Working Principle 3.1.14. Renault’s Magnet Free Motor 3.1.15. WRSM Motors: Benchmarking Scores 3.1.16. WRSM: Advantages, Disadvantages 3.1.17. AC Induction Motors (ACIM): Working Principle 3.1.18. AC Induction Motor (ACIM) 3.1.19. AC Induction Motors: Benchmarking Scores 3.1.20. AC Induction Motor: Advantages, Disadvantages 3.1.21. Reluctance Motors 3.1.22. Reluctance Motor: Working Principle 3.1.23. Switched Reluctance Motor (SRM) 3.1.24. Switched Reluctance Motors: Benchmarking Scores 3.1.25. Permanent Magnet Assisted Reluctance (PMAR) 3.1.26. PMAR Motors: Benchmarking Scores 3.1.27. Regeneration 3.2. Electric Traction Motors: Summary and Benchmarking Results 3.2.1. Comparison of Traction Motor Construction and Merits 3.2.2. Motor Efficiency Comparison 3.2.3. Benchmarking Electric Traction Motors 3.2.4. Multiple Motors: Explained 4. MOTOR MARKET IN ELECTRIC CARS 4.1. BEV and PHEV Motor Type Market Share by Region 4.2. Convergence on PM Motors by Major Automakers 4.3. Motor Type Market Share Forecast 4.4. Commentary on Electric Traction Motor Trends in Cars 4.5. Automotive Electric Motor Forecast 2015-2034 (units, regional) 4.6. Automotive Electric Motor Forecast 2015-2034 (units, drivetrain) 4.7. Automotive Electric Motor Forecast 2015-2034 (units, motor type) 4.8. Automotive Electric Motor Value Forecast 2021-2034 (US$, drivetrain) 4.9. Automotive Electric Motor Power Forecast 2015-2034 (kW, regional) 4.10. Automotive Electric Motor Power Forecast 2015-2034 (kW, drivetrain) 5. MICROMOBILITY 5.1. Introduction 5.2. Micro EV Types 5.3. The EV Revolution is Happening on Two Wheels 5.4. Micro EV Characteristics 5.5. Electric Two-wheeler Classification 5.6. Electric Two-wheelers: Power Classes 5.7. E-motorcycle Benchmarking 5.8. Motor Technologies in Two-wheelers 5.9. Zero Z-Force Powertrain 5.10. Electric Three-wheeler Classification 5.11. China and India are Major Three-wheeler Markets 5.12. Examples of E3W Models 5.13. Examples of E3W Models 5.14. What is a Microcar? 5.15. Average Motor Power of Microcars 5.16. Micromobility Motor Manufacturers 5.17. Micro-EV Motor Forecast 2021-2034 (units, vehicle type) 5.18. Micromobility Research 6. ELECTRIC LIGHT COMMERCIAL VEHICLES (ELCV) 6.1. Introduction to Electric LCVs 6.2. LCV Definition 6.3. Electric LCVs: Drivers and Barriers 6.4. Specifications of eLCVs available in Europe 6.5. Motors Used in eLCVs 6.6. Motor Number, Type and Power Trends: LCV 6.7. LCV Electric Motor Forecast 2021-2034 (units, drivetrain) 6.8. Light Commercial Vehicle Research 7. ELECTRIC TRUCKS 7.1. Zero Emission Trucks: Drivers and Barriers 7.2. Truck Weight Definitions 7.3. Integrated e-Axle Space Advantage 7.4. Medium Duty Truck Models Motor Power 7.5. Heavy Duty Truck Models Motor Power 7.6. Allison Transmission eGen Power e-Axles 7.7. BorgWarner 7.8. Dana E-Axles 7.9. Danfoss Editron 7.10. Detroit eAxles 7.11. FPT Truck Motors 7.12. Meritor Blue Horizon ePowertrain 7.13. Meritor 14Xe Electric Drivetrain 7.14. Meritor supplies Hyliion, Volta Trucks, Lion Electric and Autocar Trucks 7.15. Volvo 7.16. ZF Electrification Solutions 7.17. Truck Motor Type Market Share and Power Output Requirements 7.18. Truck Electric Motor Forecast 2021-2034 (units, drivetrain & category) 7.19. Electric Truck Research 8. ELECTRIC BUSES 8.1. Bus Types 8.2. Why Adopt Buses? 8.3. Challenges for Electric Bus Adoption 8.4. BEV & PHEV Bus Options 8.5. Electric Buses: Global Market History 8.6. Dana TM4 8.7. Equipmake 8.8. Traktionssysteme Austria (TSA) 8.9. Volvo Electric Buses 8.10. ZF 8.11. Electric Bus Motor Types 8.12. Bus Electric Motor Forecast 2021-2034 (units, drivetrain) 9. HEV DRIVE TECHNOLOGY 9.1. HEV Car Manufacturer Market Share 9.2. Hybrid Synergy Drive/ Toyota Hybrid System 9.3. Hybrid Synergy Drive/ Toyota Hybrid System 9.4. Honda 9.5. Honda Sport Hybrid Systems 9.6. Honda’s 2 Motor Hybrid System 9.7. Nissan Note e-POWER 9.8. Hyundai Sonata Hybrid 9.9. Toyota Prius Drive Motor: 2004-2010 9.10. Toyota Prius Drive Motor: 2004-2017 9.11. Comparison of Hybrid MGs 9.12. Global HEV Car Motor/Generator Trends 9.13. HEV Car MGs Trends and Assumptions 9.14. Global HEV Car MG Demand Forecast 2015-2034 (units, kW) 9.15. High Voltage Hybrid Electric Vehicle Research 10. ELECTRIC AVIATION 10.1. eVTOL Motor Requirements 10.1.1. eVTOL Motor / Powertrain Requirements 10.1.2. eVTOL Aircraft Motor Power Sizing 10.1.3. eVTOL Power Requirement: kW Estimate 10.1.4. eVTOL Power Requirement 10.1.5. eVTOL Power Requirement: kW Estimate 10.1.6. Electric Motors and Distributed Electric Propulsion 10.1.7. eVTOL Number of Electric Motors 10.1.8. Motor Sizing 10.2. Electric Motors for Aviation: Players 10.2.1. EMRAX 10.2.2. ePropelled 10.2.3. Evolito 10.2.4. H3X 10.2.5. MAGicALL 10.2.6. magniX 10.2.7. MGM COMPRO 10.2.8. Rolls-Royce / Siemens 10.2.9. Rolls-Royce / Siemens 10.2.10. SAFRAN 10.2.11. Other Player Examples 10.2.12. Power Density Comparison: Motors for Aviation 10.2.13. Torque Density Comparison: Motors for Aviation 10.2.14. eVTOL Research 11. EMERGING MOTOR TECHNOLOGIES 11.1. Axial Flux Motors 11.1.1. Radial Flux Motors 11.1.2. Axial Flux Motors 11.1.3. Radial Flux vs Axial Flux Motors 11.1.4. Yoked vs Yokeless Axial Flux 11.1.5. Challenges with Axial Flux Thermal Management 11.1.6. List of Axial Flux Motor Players 11.1.7. Beyond Motors 11.1.8. AVID Acquired by Turntide 11.1.9. EMRAX 11.1.10. Elemental Motors 11.1.11. Lamborghini 11.1.12. Infinitum Electric: Printed PCB Stator 11.1.13. Koenigsegg – raxial flux 11.1.14. Magnax 11.1.15. Magelec Propulsion 11.1.16. Saietta 11.1.17. WHYLOT 11.1.18. WHYLOT and Renault 11.1.19. YASA Axial Flux Motors 11.1.20. YASA and Koenigsegg 11.1.21. YASA and Ferrari 11.1.22. Daimler Acquires YASA 11.1.23. Benchmark of Commercial Axial Flux Motors 11.1.24. Automotive Axial Flux Motor Forecast 2021-2034 (units) 11.2. In-wheel Motors 11.2.1. In-wheel Motors 11.2.2. Risks and Opportunities for In-wheel Motors 11.2.3. Risks and Opportunities for In-wheel Motors 11.2.4. Risks and Opportunities for In-wheel Motors 11.2.5. DeepDrive 11.2.6. Elaphe 11.2.7. Gem Motors 11.2.8. Hitachi 11.2.9. Hyundai Mobis 11.2.10. Nidec 11.2.11. Protean Electric 11.2.12. REE Automotive 11.2.13. Schaeffler 11.2.14. Examples of Vehicles with In-wheel Motors 11.2.15. Axial Flux for In-wheel Motors 11.2.16. In-wheel Motors Forecast 2021-2034 (units) 11.3. Axial Flux and In-wheel Motors Benchmarking Against BEV Motors 11.3.1. Motor Type Power Density Benchmark 11.3.2. Motor Type Torque Density Benchmark 11.3.3. Axial Flux and In-wheel Benchmark against Traditional 11.4. Overcoming Issues with Switched Reluctance Motors 11.4.1. Switched Reluctance Motor (SRM) 11.4.2. No Permanent Magnets for SRMs 11.4.3. Advanced Electric Machines (AEM): Commercial Vehicles 11.4.4. AEM and Bentley 11.4.5. Enedym 11.4.6. RETORQ Motors 11.4.7. Punch Powertrain 11.4.8. Turntide Technologies 11.4.9. Switched Reluctance Players for EVs 12. MATERIALS FOR ELECTRIC MOTORS 12.1.1. Which Materials are Required for Electric Motors? 12.2. Materials for Permanent Magnets 12.2.1. Magnetic Material Distribution in Rotors 12.2.2. ID4 vs Leaf vs Model 3 Rotors 12.2.3. Magnet Composition for Motors 12.2.4. Mining of Rare-Earth Metals 12.2.5. China’s Control of Rare-Earths 12.2.6. Volatility of EV Motor Materials 12.2.7. The Market Drive to Eliminate Rare Earths 12.3. Rare Earth Reduction and Elimination 12.3.1. Europe’s Move to Magnet Free Designs 12.3.2. Tesla’s Next Generation Motor 12.3.3. How Tesla Could Eliminate Rare-earths (1) 12.3.4. How Tesla Could Eliminate Rare-earths (2) 12.3.5. How Tesla Could Eliminate Rare-earths (3) 12.3.6. Rare Earth Reduction Progress in Japan 12.3.7. Alternative Magnetic Materials 12.3.8. Alternative Magnetic Materials 12.3.9. Toyota’s Neodymium Reduced Magnet 12.3.10. Volvo Funding Niron for Rare-earth Free Magnets 12.3.11. PASSENGER Rare Earth Free Magnets 12.3.12. Ferrite Performance vs Neodymium in Motors 12.3.13. Ferrite Performance vs Neodymium 12.3.14. Recycling Rare Earths 12.3.15. OEM & Tier 1 Approaches to Eliminate Rare Earths 12.4. Rotor and Stator Windings 12.4.1. Aluminium vs Copper in Rotors 12.4.2. Round Wire vs Hairpins for Copper in Stators 12.4.3. MG Motors (SAIC) 12.4.4. VW’s MEB 12.4.5. Tesla 12.4.6. Round vs Hairpin Windings: OEMs 12.4.7. Hairpin Winding Regional Market Shares 12.4.8. A New Winding Format? 12.4.9. Aluminum vs Copper Windings 12.4.10. Compressed Aluminum Windings 12.4.11. Aluminum Windings: Players 12.4.12. Motor Materials Environmental Impact and Forecasts 12.4.13. Environmental Impact Introduction 12.4.14. Environmental Impact of Materials 12.4.15. Material Intensity for BEV Motors 12.4.16. Environmental Impact of Several BEV Motors 12.4.17. Materials in Rare Earth Motor Magnets Forecast 2021-2034 (kg) 12.4.18. Rare Earth vs Rare Earth Free Magnet Material Forecast 2021-2034 (kg) 12.4.19. Materials in Electric Motors Forecast 2021-2034 (kg) 13. THERMAL MANAGEMENT OF ELECTRIC MOTORS 13.1.1. Cooling electric motors 13.2. Motor cooling strategies 13.2.1. Air cooling 13.2.2. Water-glycol cooling 13.2.3. Oil cooling 13.2.4. Electric motor thermal management overview 13.2.5. Motor cooling strategy by power 13.2.6. Cooling strategy by motor type 13.2.7. Cooling technology: OEM strategies 13.2.8. Motor cooling strategy by region 13.2.9. Motor cooling strategy market share (2015-2022) 13.2.10. Motor cooling strategy forecast (units) 13.3. Motor insulation and encapsulation 13.3.1. Impregnation and encapsulation 13.3.2. Potting and encapsulation: Players 13.3.3. Axalta – Motor insulation 13.3.4. Elantas – insulation systems for 800V motors 13.3.5. Eaton – nanocomposite PEEK insulation 13.3.6. Solvay – PEEK insulation 13.3.7. Insulating Hairpin Windings 14. EV MOTORS: OEM USE-CASES AND SUPPLY PARTNERSHIPS 14.1. Allison Transmission – Anadolu Isuzu 14.2. Aisin Seiki, DENSO and Toyota Motor form BluE Nexus 14.3. Audi e-tron 14.4. Audi e-tron 14.5. Audi Q4 e-tron 14.6. BMW i3 2016 14.7. BMW 5th Gen Drive (Jaguar) 14.8. BorgWarner Acquires Delphi 14.9. Bosch – commercial vehicle motors 14.10. BYD e-Platform 3.0 14.11. Chevrolet Bolt Onwards (LG) 14.12. Lion Electric – Dana 14.13. Equipmake: spoke geometry 14.14. FCA and Dana 14.15. FCA and Delta 14.16. FCA and Continental 14.17. Fiat 500 Electric (GKN) 14.18. Ford Mustang Mach-E (BorgWarner and Magna) 14.19. Ford and Schaeffler 14.20. GM Ultium Drive 14.21. GM Ultium Drive 14.22. Hitachi, Nissan and Honda 14.23. Huawei – intelligent oil cooling 14.24. Hyundai E-GMP (BorgWarner) 14.25. Hyundai and Vitesco 14.26. Jaguar I-PACE (AAM) 14.27. LG Electronics and Magna 14.28. Lordstown Motors (Elaphe) 14.29. Lucid Air 14.30. MAHLE – wound rotor without brushes 14.31. Mercedes EQ 14.32. Nidec – Gen.2 drive 14.33. Nidec: Foxconn Talks 14.34. Nidec Ni200Ex and Zeekr 14.35. Nidec ramping production 14.36. Nissan Leaf 14.37. Opel/Peugeot and Vitesco 14.38. Porsche Taycan 14.39. Rivian 14.40. SAIC – Oil cooling system 14.41. Schaeffler – Truck motors 14.42. Stellantis Shared Platform (Npe) 14.43. Tesla Induction Motor 14.44. Tesla PM Motor 14.45. Tesla’s Carbon Wrapped Motor 14.46. Toyota Prius 2004 to 2010 14.47. Vitesco 14.48. VW ID3/ID4 14.49. Yamaha – hypercar electric motor 14.50. ZF – motor innovations 15. EV MOTORS: OEM BENCHMARKING 15.1. Automotive 15.1.1. BEV Power Density Benchmarking 15.1.2. BEV Torque Density Benchmarking 15.1.3. BEV Power and Torque Density Benchmark 15.1.4. BEV Motor Specification Summary 15.2. Commercial Vehicles 15.2.1. Commercial Vehicle Motors Power Density Benchmarking 15.2.2. Commercial Vehicle Motors Torque Density Benchmarking 15.2.3. Commercial Vehicle Motors Power and Torque Density Benchmark 15.2.4. Commercial Vehicle Motor Specification Summary 15.3. Light Duty 15.3.1. Light Duty Vehicle Motors Power Density Benchmarking 15.3.2. Light Duty Vehicle Motors Torque Density Benchmarking 15.3.3. Light Duty Vehicle Motor Specification Summary 16. FORECASTS AND ASSUMPTIONS 16.1. Forecast Methodology & Assumptions 16.2. Motor Price Forecast and Assumptions 16.3. Motor per Vehicle and kW per Vehicle Assumptions 16.4. Automotive Electric Motor Forecast 2015-2034 (units, regional) 16.5. Automotive Electric Motor Forecast 2015-2034 (units, drivetrain) 16.6. Automotive Electric Motor Forecast 2015-2034 (units, motor type) 16.7. Automotive Electric Motor Power Forecast 2015-2034 (kW, regional) 16.8. Automotive Electric Motor Power Forecast 2015-2034 (kW, drivetrain) 16.9. Automotive Electric Motor Value Forecast 2021-2034 (US$, drivetrain) 16.10. Micro-EV Motor Forecast 2021-2034 (units, vehicle type) 16.11. LCV Electric Motor Forecast 2021-2034 (units, drivetrain) 16.12. Truck Electric Motor Forecast 2021-2034 (units, drivetrain & category) 16.13. Bus Electric Motor Forecast 2021-2034 (units, drivetrain) 16.14. Global HEV Car MG Demand Forecast 2015-2034 (units, kW) 16.15. Automotive Axial Flux Motor Forecast 2021-2034 (units) 16.16. In-wheel Motors Forecast 2021-2034 (units) 16.17. Materials in Rare Earth Motor Magnets Forecast 2021-2034 (kg) 16.18. Rare Earth vs Rare Earth Free Magnet Material Forecast 2021-2034 (kg) 16.19. Materials in Electric Motors Forecast 2021-2034 (kg) 16.20. Motor cooling strategy forecast (units) 16.21. Total Motors Forecast by Vehicle and Drivetrain 2021-2034 (units) 16.22. Total Motor Power Forecast by Vehicle and Drivetrain 2021-2034 (kW) 16.23. Total Motor Market Size Forecast by Vehicle and Drivetrain 2021-2034 ($ billions) 16.24. Company Profiles

link

Mitsubishi, Chrysler, Mercedes-Benz recall vehicles Previous post Mitsubishi, Chrysler, Mercedes-Benz recall vehicles
What Brands Are In the Shop Most Often? Next post What Brands Are In the Shop Most Often?